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Abstract 

Accurate prediction of ADMET properties (absorption, 
distribution, metabolism, excretion, and toxicity) is crucial 
in early drug discovery. While machine learning (ML) has 
become central to this task, traditional single-task 
approaches remain limited in generalization and 
scalability. Multi-task learning (MTL) offers an integrative 
solution by enabling joint modeling of multiple 
pharmacokinetic and toxicological endpoints through 
shared representations. 
This review summarizes recent MTL architectures for 
ADMET prediction, including shared-layer neural 
networks, graph-based models, and transformer-based 
pipelines. We analyze commonly used datasets, endpoints 
(e.g., CYP inhibition, hERG toxicity, metabolic stability), 
and evaluation practices, highlighting architectural trends, 
methodological gaps, and unresolved challenges. This 
review aims to serve as a practical reference for 
researchers building robust multi-endpoint predictive 
models in pharmaceutical applications. 
Keywords: ADMET prediction; multi-task learning; deep 
learning; drug discovery; pharmacokinetics; graph neural 
networks 
1. Introduction 
Accurate prediction of ADMET properties is essential for 
early-phase drug discovery. It has been reported that 
ADMET-related issues accounted for up to 50% of drug 
failures in the 1990s [1]. ML offers scalable alternatives to 
reduce cost and time in early drug discovery [2], [3], [4]. 
However, single-task learning (STL) approaches are often 
limited by fragmented datasets, poor generalization, and 
narrow endpoint focus [5], [6], [7]. MTL, by modeling 

multiple outputs simultaneously, offers a more 
data-efficient and scalable solution [5], [6]. 
This review surveys and compares recent MTL models 
applied to ADMET prediction. We focus on architectural 
strategies, datasets, targeted endpoints, and performance 
trade-offs, aiming to identify emerging patterns and open 
challenges. This review focuses on supervised MTL 
architectures and does not cover few-shot or reinforcement 
learning approaches, which are emerging in ADMET 
prediction. 
2. Scope and Methodology 
We selected and analyzed 8 representative MTL models 
(2014–2025), covering: 
Architectures: shared-layer DNNs, GCNs, transformers, 
adaptive gating mechanisms, uncertainty estimation. 
Datasets: Merck, Tox21, public ADMET sets, in-house 
pharma panels, 10M+ unlabeled pretraining sets. 
Endpoints: CYP450 inhibition, hERG toxicity, metabolic 
clearance, oral bioavailability, logP, half-life, and more. 
We summarized key attributes in a timeline and 
comparative table. 
3. Comparative Summary 
To illustrate the diversity of architectural strategies and 
task configurations in practice, we summarize 
representative MTL models for ADMET prediction 
developed over the past decade. These models vary in 
complexity, target endpoints, input modalities, and training 
strategies, reflecting the field’s rapid evolution. The 
following models represent key milestones in the transition 
from simple STL baselines to modern, multi-endpoint 
MTL architectures (Table 1). 

 
Table 1. MTL models for ADMET property prediction 

Model Architecture Datasets ADMET Endpoints 

Merck MTL DNN [8] Fully-connected DNN (shared 
hidden layers, multi-output) 

Merck Kaggle challenge 
data (chemical 
descriptors) 

15 assays (ADME-related 
properties like solubility, 
permeability, etc. in one model) 

DeepTox [9] Fully-connected deep neural 
nets (ensemble) 

Tox21 challenge dataset 
(12k compounds, 
descriptors) 

12 toxicity pathways (nuclear 
receptor and stress response 
assays) predicted together 

Wenzel et al., 2019 [10] Fully-connected DNN 
(optimized hyperparameters; 
“response maps” for 
interpretation) 

Public & corporate 
ADME data (~50k 
compounds; molecular 
descriptors) 

~5 endpoints: microsomal 
metabolic stability (multiple 
species), Caco-2 cell 
permeability, logD (distribution 
coefficient) 

gTPP model [11] Graph Convolutional Network 
(GCN); single model with 
shared graph embedding 

In-house pharma dataset 
(enterprise-wide ADME 
assays) 

18 “early ADME” properties 
(in vitro absorption, 
distribution, metabolism 
metrics across discovery 
pipeline) 
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Model Architecture Datasets ADMET Endpoints 

HelixADMET [12] Self-supervised pre-trained 
model (molecular graph 
Transformer) + multitask 
fine-tuning 

Combined public 
ADMET datasets; 
pretraining on 10M 
unlabelled molecules 

Dozens of ADMET endpoints 
(flexible/extendable; e.g. CYP 
enzyme inhibition, clearance, 
toxicity, etc.), integrated via 
multi-task and multi-stage 
training 

Rodríguez-Pérez et al., 
2023 [11] 

Multi-task graph neural 
network (GCN) with 
uncertainty estimation 

In vitro clearance data for 
multiple species (e.g. 
human, rat microsomal 
clearance) 

Intrinsic clearance in multiple 
species (multi-species 
metabolic clearance regression 
tasks), learned jointly 

MTGL-ADMET [13] Adaptive multi-task graph 
learning (GNN with 
primary-task-centric gating 
mechanism) 

Multiple ADMET 
datasets; status theory 
used for task selection 

Mixed endpoints (e.g. 
classification of CYP450 
inhibition, toxicity, etc., and 
regression of PK properties like 
logP, half-life). Uses “one 
primary, multiple auxiliaries” 
paradigm 

ADME-DL [14] Sequential multi-task training 
pipeline (order-aware; uses 
GNN/Transformer foundation 
models) 

Aggregated ADME 
datasets; drug-like and 
non-drug compound 
libraries 

21 ADME property tasks (e.g. 
human absorption fraction, 
volume of distribution, 
clearance, half-life, etc.) trained 
in A→D→M→E sequence; 
plus final drug-likeness 
classification as evaluation task 

 
4. Key Findings 
4.1 Architectural Trends 
Early models (Merck MTL, DeepTox) used simple 
shared-layer DNNs. 
Recent approaches (HelixADMET, MTGL-ADMET, 
ADME-DL) adopt GNNs and transformers with 
self-supervised pretraining, dynamic task weighting, and 
sequential pipelines.​
Gating and task-specific heads enhance modeling of 
heterogeneous endpoints. 
4.2 Endpoint and Dataset Diversity 
Most models address 5–20 ADMET endpoints, e.g., 
metabolic stability, CYP450 inhibition, hERG toxicity, and 
clearance. 
Datasets are often noisy or imbalanced; recent models use 
transfer learning to overcome data scarcity. 
4.3 Performance and Limitations 
MTL outperforms STL for correlated tasks. Key 
limitations include negative transfer, task imbalance, and 
data sparsity. 
Few models explicitly model task uncertainty or resolve 
inter-task conflicts. Architectural diversity continues to 
grow, but benchmarking remains inconsistent. 
5. Conclusion 
MTL models are increasingly deployed in early-stage 
screening pipelines by pharmaceutical companies, where 
simultaneous prediction of multiple endpoints accelerates 
lead optimization and reduces experimental overhead. 
MTL models for ADMET prediction show growing 
architectural sophistication and improved generalization. 
Challenges remain in task balancing, dataset quality, and 
evaluation standards. 
Future directions include molecular graph pretraining, 
adaptive task weighting, and integration of 
omics/structure-based features. 

This review outlines current progress and offers guidance 
for designing scalable MTL frameworks in pharmaceutical 
ML. 
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