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Background 

Hospital-acquired pressure injuries (HAPIs) are a pervasive and costly complication in healthcare systems 
worldwide, significantly affecting patient morbidity, mortality, and length of hospital stay. Existing risk 
assessment tools, such as the Braden, Norton, and Waterlow scales, are widely used but demonstrate 
only moderate predictive validity. Their subjectivity and dependence on manual input by clinicians can 
lead to variability and missed assessments, particularly in busy acute care settings. As healthcare shifts 
towards digitalization and big data, machine learning (ML) presents an opportunity to enhance the 
accuracy and efficiency of pressure injury risk prediction using comprehensive electronic health record 
(EHR) data. 

Objectives 

This study aimed to: 
1. Develop a predictive machine learning model using retrospective EHR data to identify hospitalized 

patients at risk of acquiring pressure injuries. 
2. Evaluate the diagnostic accuracy of the ML algorithm by comparing its sensitivity and specificity with 

the standard Braden Scale scores documented in patient records. 

Methodology 

A retrospective, iterative study was conducted at Singapore’s largest acute tertiary hospital, with approval 
from the institutional review board. Patient medical records from 2018 and 2020–2022 were extracted 
and de-identified, yielding data from 78,453 patients (120,887 encounters). Key clinical and demographic 
features, including age, gender, vital signs, urinary device use, nursing care notes, and laboratory results, 
were collated and engineered into analysable variables. HAPIs were defined as occurring ≥36 hours after 
admission. 
 
Model development followed a multi-stage process: 
• Feature Engineering & Selection: Thirty-one potential risk factors were initially identified and refined 

using feature importance rankings. 
• Model Training: Multiple ML algorithms were evaluated in early iterations; LightGBM, a tree-based 

algorithm suited to large and sparse datasets, was selected for primary model development. 
• Iterative Testing: Models were successively trained on increasing data sizes, validated and tested with 

stratified subsets (12,089 encounters each for validation and evaluation). 
• Comparison: The performance of ML models using both comprehensive (31-feature) and reduced 

(six-feature) sets was compared to the Braden Scale using standard metrics: sensitivity, specificity, 
AUROC, and likelihood ratios. 

• Interpretability: Shapley Additive Explanations (SHAP) were used for feature importance analysis. 

Results 

The final models demonstrated superior predictive performance relative to the Braden Scale. The six-
feature ML model (One Record PAtient-6)—using mobility, age, heart rate, body temperature, body mass 
index, and skin moisture—outperformed the Braden Scale with a sensitivity of 0.83 and specificity of 0.80 
(vs. Braden’s 0.74 and 0.68, respectively). The 31-feature model (ORPA-31) yielded even higher specificity 
and AUROC but posed more significant deployment barriers in real-world clinical settings. 
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Feature analysis highlighted mobility as the strongest individual predictor, followed by age, heart rate, 
body temperature, skin moisture, and body mass index. Notably, age, an established risk factor in clinical 
practice, is not formally included in most traditional risk scales. 

Discussion and Impact 

This proof-of-concept demonstrates that machine learning algorithms, using routinely collected EHR data, 
can meaningfully improve the identification of patients at risk for HAPI compared to current manual 
methods. The proposed ML models provide a framework for real-time, automated risk stratification, 
reducing manual burden on nursing staff and supporting targeted, timely intervention. The compact six-
feature model is especially promising for future clinical integration, as it balances performance with 
feasibility. 
 
The study underscores the need for further validation, particularly across diverse healthcare settings and 
populations. Limitations include single-centre data, absence of certain social/ethnic variables, and the 
need for complete data input for predictions. Future work will include prospective “silent” trials to 
evaluate real-world impact, with the aim of embedding the model within EHR workflows to dynamically 
alert care teams and prevent adverse outcomes. 

Conclusion 

Machine learning offers a compelling alternative to traditional, manual risk assessment scales for hospital-
acquired pressure injury prevention. This work demonstrates the feasibility and improved accuracy of an 
ML-based approach in a large tertiary hospital setting, paving the way for smarter, data-driven risk 
management and preventive care. 
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