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Abstract

This study aims to integrate computer vision technology for human
motion capture, elderly exercise test scales, and body composition
analysis devices. It specifically focuses on analyzing changes in
the center of gravity (COG) during movement to verify the role
of computer vision in assessing the motor functions of the elderly,
thereby providing support for maintaining their motor functions.
This study offers a theoretical and practical foundation for objec-
tively and efficiently evaluating the motor functions of the elderly
using computer vision technology, as well as for delaying the de-
cline in their motor abilities.
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1 Introduction

With the increase of age, the elderly often face health problems
such as a reduction in skeletal muscle mass and a decline in phys-
ical balance [3], which subsequently lead to a decrease in motor
function and severely affect their daily life autonomy and indepen-
dence. In our previous research, we have utilized computer vision
models to obtain the feature point data of the elderly during ex-
ercise, conducted quantitative analysis of gait movement changes,
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and inferred their health status by combining body composition
indicators[2], providing preliminary verification for the application
of computer vision technology based on human motion capture in
motor function assessment.

The goal of this study is to further expand and optimize the
methods for motor function assessment. By incorporating the index
of COG volatility and combining the test results of the Short Phys-
ical Performance Battery (SPPB) scale and the body composition
analysis device Inbody, a comprehensive analysis will be carried
out to explore a comprehensive system of motor function assess-
ment indicators. Specifically, scale normalization, Kalman Filter
(KF), and Dynamic Time Warping (DTW) algorithms are employed
to calibrate, denoise, and align the motion feature data. Based on
the optimized data, the center of gravity index is obtained through
weight calculation, and the internal relationships among this index,
the performance of SPPB tests, and skeletal muscle-related health
indicators are thoroughly analyzed.

The results showed that the volatility index of the COG x-coordin
ate was significantly negatively correlated with the score of test
2 (walking test) in SPPB, with a correlation coefficient of —0.43
and a P<0.05. It had a correlation coefficient of approximately . 3
with skeletal muscle-related body composition indices, though this
correlation was not significant.

2 Experimental Method

In this study, an experiment is conducted to obtain motion feature
coordinate data from walking videos of 19 elderly subjects in Japan,
record the SPPB scale test results, and meanwhile use the Inbody
body composition analyzer to acquire the elderly subjects’ body
composition indicators!. The specific steps as follows:
STEP 1: Scale Normalization

First, the Euclidean distance from the nose to the midpoint of
the hips is calculated as the reference length. Subsequently, the
median of the reference lengths across all valid frames is adopted as

!'This survey is conducted after prior ethical review and approval by the Institutional
Review Board (IRB) of the Graduate School of Health Sciences, Kobe University (ap-
proval number: 1249).
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Figure 1: Preprocessing process: (a) Scale normalization, (b)
Kalman Filter and Dynamic Time Warping.

the global reference scale, and combined with the trunk length for
perspective correction. All 17 key point coordinates are normalized
relative to the midpoint of the hips.

STEP 2: Kalman Filter and Dynamic Time Warping

Following scale normalization, the keypoint trajectories were
smoothed using a KF [5]. Its "prediction-update" process first pre-
dicts current position from previous frame’s position and velocity,
then corrects it with current frame’s observed coordinates to bal-
ance motion laws and observational data reliability.

DTW then aligned left-right symmetric keypoints (shoulders,
hips)[1]. The algorithm constructs a distance matrix to measure
pairwise point similarity between two sequences, with window
constraints to prevent excessive timeline distortion. It calculates
cumulative minimum distances to find optimal matching paths, then
aligns sequence lengths by linear interpolation when necessary.
Meanwhile, Non-symmetric keypoints retain their filtered values
in the final aligned output. Figure 1 shows the preprocessing flow.
STEP 3: Construct a Weight-Based COG Index

First, based on human anatomical and kinematic characteristics
[4], weights reflecting the mass proportion of corresponding body
parts are assigned to 17 key points. Subsequently, using the aligned
coordinates of these key points, the x and y coordinates of the
center of gravity are calculated frame by frame through a weighted
sum of each key point’s coordinates and its corresponding weight.
Finally, a dataset containing the center of gravity coordinates is
generated to quantify the overall spatial position characteristics of
human movement.

3 Results and Discussion

Pearson, Spearman rank, and Kendall tau-b correlation analyses
are used to explore the correlations among the COG volatility in-
dex, SPPB test results, and skeletal muscle-related body compo-
sition indices. As showing in Figure 2, the volatility of the COG
x-coordinate (COG_x) is significantly negatively correlated with the
total SPPB score (test2_score) (r=-0.43,P<0.05). During human
movement, the COG x-coordinate volatility represents horizontal
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Figure 2: Correlateion analysis via COG and SPPB results.

swing amplitude, indicating body control stability. A negative cor-
relation with SPPB performance shows that higher volatility means
poorer performance and weaker control. No significant correlation
was found between COG volatility and skeletal muscle-related body
composition indices, likely due to a small sample size. However, a
positive correlation (r~@. 3) between COG horizontal fluctuation
and these indices offers a research direction for future studies.

4 Conclusion

This study integrated computer vision, SPPB scale, and body compo-
sition analysis devices to analyze COG changes during movement
of 19 elderly Japanese subjects. It used algorithms to preprocess
motion data, constructed a COG index, and explored correlations
among the index, SPPB results, and body composition indices.
The results indicate that the significant association between COG
and motor ability in elderly subjects provides an effective basis for
evaluating motor function. However, due to limited sample size,
some correlations have not fully demonstrated. Future studies will
explore these associations by expanding sample size and optimizing
data accuracy to better reflect movement-health relationships.
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